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Executive Summary
1.  What Is Facial Recognition? Facial recognition is a way of using software to determine the similarity 

between two face images in order to evaluate a claim. The technology is used for a variety of purposes, 
from signing a user into their phone to searching for a particular person in a database of photos.

2.  What Is Facial Characterization? Facial characterization refers to the practice of using software to 
classify a single face according to its gender, age, emotion, or other characteristics. Facial classification 
is distinct from facial recognition, whose purpose is instead to compare two different faces. Facial 
characterization is often confused with facial recognition in popular reporting, but they are actually 
distinct technologies.  Many claims about the dangers of facial recognition are actually talking about 
characterization.

3.  How Does Facial Recognition Work? Facial recognition uses computer-generated filters to transform 
face images into numerical expressions that can be compared to determine their similarity. These filters 
are usually generated by using deep “learning,” which uses artificial neural networks to process data.

4.  How Accurate Is Facial Recognition? Facial recognition is improving rapidly, but while algorithms can 
achieve very high performance in controlled settings, many systems have lower performance when 
deployed in the real world. Summarizing the accuracy of a facial recognition system is difficult, how-
ever, as there is no single measure that provides a complete picture of performance.

5.  What Are Similarity Scores? Similarity scores provide feedback to human operators about how similar 
the algorithm believes two images are. These scores can be misunderstood and are often treated as 
providing more authoritative information than they really do because of something known as the
“prosecutor’s fallacy.”
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6.	What Are Comparison Thresholds? Facial recognition systems face a trade-off between low false neg-
ative rates and low false positive rates. Comparison thresholds are a way of using the similarity scores 
calculated by facial recognition algorithms to tune a system’s sensitivity to these two types of errors. 
Thresholds are adjusted to account for trade-offs between accuracy and risk when returning results to 
human adjudicators.

7.	Is Facial Recognition Biased? Demographic differences in facial recognition accuracy rates have been 
well documented, but the evidence suggests that this problem can be addressed if sufficient attention 
is paid to improving both the training process for algorithms and the quality of captured images.  

8.	What Does This Mean? Facial recognition is usually discussed only in the context of its most dystopic 
applications, but it is a multifaceted tool that can be applied to a range of different problems. Facial 
recognition is used to aid human decisionmaking rather than replace it. Human oversight helps to 
mitigate the risk of errors. Operators need to understand how system performance can be affected 
by deployment conditions in order to put in place the right safeguards to manage trade-offs between 
accuracy and risk. A better understanding of the issues covered in this report will help ensure this 
technology can be deployed safely in ways that let us capture its benefits while managing risks. 

Introduction
As an increasing number of organizations begin to use facial recognition technologies (FRTs), concerns 
have mounted over the potential risks the technology may pose to privacy and other civil liberties. At all 
levels of government, policymakers have begun to propose new rules and regulations to govern the use of 
FRTs and manage any risks. It is important that these efforts be grounded in fact about how the technolo-
gy works, since much public discussion so far has been muddled by exaggerations about the technology’s 
performance, misunderstandings about the details of its operation, and conflation of different types of sys-
tems. This paper provides an examination of how the technology works and how to understand questions 
about its performance and operation. 

What Is Facial Recognition?
Facial recognition is a subfield of computer vision research focused on building software systems that 
can analyze the similarity between faces in images and video. In practice, facial recognition tools can be 
thought of as a way to evaluate a claim involving a particular person. Those claims can be anything from 
“is this person who they say they are?” to “is this person contained within this database?” or even simply 
“has this person ever been seen by the system before?” While this can sometimes be done in an entirely 
automated manner, facial recognition is usually deployed in combination with human examiners who are 
responsible for reviewing and adjudicating the decisions returned by the software.

Today, almost all new facial recognition systems are built with the help of deep learning, a form of machine 
learning that uses artificial neural networks to process data. Facial recognition developers use deep learn-
ing to create software programs capable of transforming face images into numerical expressions that can 
be compared to determine their similarity. Facial recognition is a form of biometric identification, but it is 
important to note that not all biometric processing involves the use of deep learning. 

Importantly, facial recognition is different from facial characterization (also sometimes referred to as facial 
analysis). In facial recognition, algorithms are used to compare the similarity of two faces. In facial char-
acterization, algorithms are used to classify a single face according to its gender, age, emotion, or other 
characteristics. Used on its own, facial characterization can be used to anonymously profile individuals for 
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purposes such as counting the number of men and women entering a particular store or providing data 
about how different demographic groups respond to a product or advertisement. 

Facial characterization is a distinct technology with its own separate development process, uses, and risks, 
but people sometimes use the terms facial characterization and facial recognition interchangeably when 
they are in fact very different. There are important conversations to be had about how to govern charac-
terization systems—especially given recent attempts to use it for highly questionable purposes such as 
classifying people by ethnicity or “detecting” an individual’s sexual orientation, political orientation, 
or criminality—but these should be undertaken with an awareness that facial characterization and facial 
recognition are separate technologies. 

One of the most common uses of FRT is verification (also known as 1:1 matching), where the technology 
is used to confirm whether a person is connected to a specific identity record. Examples of verification are 
when a person uses their face to unlock their smartphone, sign in to a banking app, or verify their iden-
tity when passing through airport security. When a person logs in, the system takes a picture of their face 
and then compares it with the image on record for that person. If the two faces match, the person is then 
granted access. Comparison photos are usually either taken when a person first signs up for the service or 
drawn from a trusted source such as a passport or national identity registry. 

Identification (also known as 1:N or 1:many matching) is when facial recognition is used to determine wheth-
er a record for an unknown individual exists in a larger database of known faces. The most well-known 
example of identification is the police practice of using facial recognition to generate a lineup of potential 
suspects based on images or footage of a crime. However, law enforcement has also used identification to 
search for missing persons, identify deceased individuals, and de-duplicate database records. Identification 
can also be used by the private sector to enforce blacklists (such as when a casino monitors its customers to 
detect gambling addicts) or whitelists (such as when a building’s management wants to automate the process 
of granting access to employees or residents). Identification almost always incorporates human review, either 
by requiring a trained human operator to select a match from a list of options presented by the software or by 
allowing individuals to appeal decisions they disagree with to human adjudicators. 

Identification does not necessarily supply any information about who a person is. That is, FRT can be used 
in ways that do not actually involve collecting or linking any personal data about the person in question. For 
example, some retail stores may create customer tracking systems that allow the store to recognize return 
customers and track in-store behavior for marketing analysis but not link that data to any biographic infor-
mation such as a name, address, or purchasing history. The only thing the store facial recognition system 
would recognize is that visitor #12345 had returned on a certain day. It would not have any way to tell that 
visitor #12345 was Jane Smith of 678 Main Street. Similar systems can also be used in the opposite way—to 
identify when a person has not been seen before. An example of this is the Beijing park that was experiencing 
issues with visitors taking too much toilet paper and decided to install toilet paper dispensers with FRT that 
first check to ensure that a person had not been encountered by the system in the past nine minutes. 

How Does Facial Recognition Work?
Facial recognition works by transforming an image of a face into a numerical expression called a template 
that can be used to compare the similarity of face images. By comparing the templates of different faces, 
it is possible to determine whether two given faces belong to the same subject, similar to how one might 
compare fingerprint records. The process of generating these templates is often described as a matter of 
locating certain key points on a face and measuring the distances between them, but this is not accurate. 

https://www.wsj.com/articles/the-quiet-growth-of-race-detection-software-sparks-concerns-over-bias-11597378154
https://www.bbc.com/news/technology-41188560
https://www.psypost.org/2021/03/facial-recognition-technology-can-predict-a-persons-political-orientation-with-72-accuracy-59888
https://www.bbc.com/news/technology-53165286
https://www.bbc.com/news/world-asia-china-39324431
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While some older attempts at building facial recognition systems did take this approach, today’s systems 
are far more sophisticated. Modern facial recognition programs instead generate face templates by passing 
an image through a series of computer-generated “filters.” 

To understand how this works, it is important to first remember that a computer does not interpret a 
picture of a face the same way a human would. A computer does not see a face as a collection of colors, 
shapes, and features, but rather as a matrix of numbers. These numbers are arranged so that each one de-
scribes the lightness or darkness of a certain pixel. The goal of facial recognition is to find a way to reliably 
recognize a face from the way these numbers are organized within the matrix. 

         

96 99 97 94 80 83 68 76 64 66 58 74

101 99 101 91 8 11 34 67 62 60 54 56

98 95 26 16 21 161 153 31 39 63 62 63

96 92 10 89 160 221 223 169 99 71 59 54

95 88 93 142 182 197 246 234 215 50 43 58

92 92 84 101 204 227 230 223 211 81 57 57

82 89 74 92 104 158 93 226 215 69 57 48

85 87 70 78 90 207 196 226 209 187 52 50

92 90 67 64 170 220 200 238 198 185 40 43

85 77 69 70 157 119 185 211 190 153 44 39

80 44 74 102 86 153 169 208 202 146 44 42

76 73 64 57 93 225 210 203 179 42 28 37

76 69 62 69 53 128 162 155 245 27 16 28

65 64 61 56 49 72 246 244 26 20 16 11

73 30 4 42 109 55 245 136 13 8 14 3

0 3 0 16 53 116 130 29 10 8 31 4

2 4 15 11 73 115 57 16 54 8 42 4

One way of achieving this is by using filters. Today, the idea of image filters is most familiar in the context 
of smartphone camera apps. These kinds of filters can take an image and adjust its color, contrast, or other 
visual details by going through the matrix of numbers that make up an image and slightly tweaking them 
all according to a pre-determined set of rules that create a particular visual style. The result of this manipu-
lation is that when you put all the numbers back together, the image looks slightly different to our eyes.  

                                      

The filters used for facial recognition are based on the same idea of manipulating pixel values according to 
a set of programmed rules. However, they differ in that their purpose is not to tweak the visual details of 
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a face image but rather to transform the image into a simplified “fingerprint” that distinctively represents 
that face. To understand what this means, consider the case of the following sets of numbers:

List 1: [8, 1, 2, 4, 2, 5, 6, 7, 8, 7, 8, 9, 8, 4, 2, 1, 1, 6, 6, 2, 2, 2, 1, 6]

List 2: [6, 8, 8, 3, 4, 1, 7, 8, 3, 4, 1, 7, 4, 2, 5, 8, 2, 3, 3, 2, 7, 7, 9, 8]

Imagine you were given the task of comparing these two lists to determine whether they contained the 
same numbers (just in a different order). How would you go about it? One answer may be to manually go 
through each list to check off each number against the opposite list, but this would take a very long time 
and would not scale well if you were asked to do many thousands of these comparisons. A better solution 
would be to find some way of simplifying each list into a form that was easier to compare immediately. 
One option might be to use the average of the values in the lists. If the two lists contained the same num-
bers, their averages should also be the same. You could calculate that List 1 has an average value of 4.5, 
whereas List 2 has an average value of 5. By using the average value of the list as a kind of fingerprint, it is 
possible to quickly and easily determine that the lists contain different sets of numbers.

Of course, the average of a list of numbers is not a unique representation of that list. Even if you were pre-
sented with two lists that both had an average value of five, you would not be able to know for certain that 
they contained the exact same numbers. One list may hold 20 fives while the other held 10 ones and 10 
nines. A better operation would be able to reduce those lists into a representation that was more distinc-
tive, and which would not be mistaken for anything other than a truly matching list of numbers. This is the 
mission of facial recognition developers: to create a way of transforming the information contained in a 
digital face image into a simplified but still highly distinctive representation. These templates would ideally 
be unique in the sense that no two faces should ever produce highly similar templates, and they should be 
robust in the sense that different instances and angles of the same face should always lead to highly simi-
lar templates. Currently, the templates created by modern FRT systems are neither unique nor fully robust 
but getting closer to these goals is the focus of current research efforts.

The operation performed by a facial recognition system to produce a template from a digital image is far more 
complex than simply taking the average of all the numbers in the matrix of pixel values. The template genera-
tion process in modern facial recognition systems involves applying a series of filters that move across the 
image and perform calculations on pixel values to yield simplified representations, as illustrated below. 

In the illustration above, the numbers shown represent the pixel values of the facial image. The red box is 
the “filter,” containing numbers or a computational process not illustrated. The output values (x, y, z, and 
so on) are the result of multiplication and additions or some other operations (such as “find the largest 
number”) on the image pixels within the red box.



How Does Facial Recognition Work?  |  6

By repeating this process over and over on the image using multiple different filters, facial recognition 
models are able to eventually produce a simplified template that is easily comparable while still being dis-
tinctive to the subject and hopefully robust to the quality of the images. An example of an algorithm that 
works this way is Facebook’s DeepFace system, illustrated below by Facebook in a recent report, which 
puts images through seven stages of processing and begins by applying 32 different filters to three different 
versions (one version for each primary color) of the target image. The complexity of this approach shows 
just how far this technology has come from early attempts to simply measure the distances between key 
points on subjects’ faces. 

Source: Yaniv Taigman et al., “Deepface: Closing the Gap to Human-Level Performance in Face Verification,” Conference on Computer Vision and 
Pattern Recognition (CVPR), Facebook, June 24, 2014, https://research.fb.com/publications/deepface-closing-the-gap-to-human-level-perfor-
mance-in-face-verification/. 

 

The key question driving this process is what operation the filters perform on the pixel values to create the 
simplified representations. Simply averaging the values inside the filter as it scans across the image will 
not work. In the early days of facial recognition research, scientists were responsible for manually selecting 
the filters that would be applied. Today, however, these filters are instead chosen by the computer itself.

Modern facial recognition developers use deep learning to automate a process of trial and error that helps 
identify the best filters for reliably generating robust templates. Training these systems involves provid-
ing them with a series of “triplets”—collections of three face images where two of the faces belong to one 
person and the third belongs to someone else. The system turns each of the three images into a template 
and then compares their similarity. The system is given the goal of achieving the maximum similarity for 
the templates coming from the same subject and the minimum similarity for the templates coming from 
different subjects.

As the system churns through tens or hundreds of thousands of these triplets, the algorithm continu-
ously tweaks the operations its filters perform and then measures whether the changes it made result in 
better or worse accuracy in correctly determining which of the three images are from the same person. 
If a change leads to an improvement, the system keeps it, and if performance gets worse, the system will 
revert to its previous state and then try something else. In this way, the system slowly learns which filters 
are the best at creating distinctive face templates. At the end of this process, the system arrives at a set of 
filters that have repeatedly proven their efficacy. At this point, the model is ready to be packaged as part of 
a software program and sold to operators. 

How Accurate Is Facial Recognition?
Facial recognition has improved dramatically in only a few years. Precisely quantifying this progress is 
difficult, however, because there is no single value that provides a complete picture of a facial recognition 

https://research.fb.com/wp-content/uploads/2016/11/deepface-closing-the-gap-to-human-level-performance-in-face-verification.pdf
https://research.fb.com/publications/deepface-closing-the-gap-to-human-level-performance-in-face-verification/
https://research.fb.com/publications/deepface-closing-the-gap-to-human-level-performance-in-face-verification/
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system’s “accuracy.” It is very common for vendors and commentators to use general statistics to describe 
their facial recognition system’s performance, such as claiming that a particular system is “99 percent 
accurate.” But these kinds of assertions do not give a complete picture of the performance operators should 
expect to see once the system is actually deployed.

For one thing, it is not immediately obvious what a claim like “99 percent accurate” actually means. This is 
because there are two different kinds of mistakes that a facial recognition system can make: false negatives 
and false positives. False negatives occur when the system incorrectly says two images of the same person 
do not match. False positives occur when the system incorrectly says two images from different people are 
the same person. To take the example of a smartphone that logs you in by scanning your face, an example 
of a false negative would be when you pick up the phone, and it does not let you in because it thinks you 
are someone else. A false positive would be when somebody else picks up your phone, and it mistakenly 
logs them in thinking that they are you. 

Therefore, a claim of 99 percent accuracy could mean that out of 100 times the system was presented 
with a matching face, it only incorrectly rejected one (a false negative rate of 1 percent). Or it could 
mean that out of 100 imposters who tried to log in to the system, only one ended up being accepted (a 
false positive rate of 1 percent). It could also mean that out of 100 total judgments (both rejections and 
approvals), only one was incorrectly decided. This is an important distinction, especially when thinking 
about high-risk applications such as law enforcement investigations. But even if this information were 
specified, the number is still not helpful until you also have the context of the tests. Was this 99 percent 
accuracy measured by testing on high-quality images in a lab or by observing the system’s actual opera-
tion in a real-world setting? 

The most authoritative source of data on the accuracy of facial recognition systems comes from the U.S. 
National Institute of Standards and Technology (NIST) and their Face Recognition Vendor Test (FRVT), 
a series of evaluations on facial recognition systems that has been ongoing for two decades. Results from 
the FRVT allow us to gain a sense of how the technology has improved over time. One indicative test in 
the FRVT involves providing facial recognition algorithms with the photo of a test subject and then asking 
the system to search through a curated database of 1.6 million high-quality mugshots to return the one 
the algorithm thinks is most similar. In 2013, the best algorithm returned the wrong photo 4.1 percent 
of the time.1 The leading algorithm, as of March 2021, returned the wrong photo less than 0.1 percent of 
the time.2 NIST reported that as of 2021, at least 30 developers submitted algorithms that outperformed 
the leading system in 2013, pointing to broad improvements across the industry. Even when the subject 
is wearing a mask obscuring more than 70 percent of their face, NIST tests have found that leading algo-
rithms can achieve over 97 percent true positive rates, which is equivalent to the performance of state-of-
the-art systems on unmasked faces in 2017. 

These results are impressive and help explain the recent interest of so many organizations in adopting the 
technology. However, it is important to note that this degree of accuracy is contingent on a number of 
factors, most importantly, the algorithm being used, the quality of the images being compared, and the size 
of the search space. The photos used in the tests described above were taken in dedicated photographic en-
vironments with assistance from a human operator. This helped ensure that images had good lighting, that 
the positioning of subjects’ faces was consistent, and that facial features were never unclear or obscured. 
Facial recognition systems have much better accuracy rates when the images they are comparing are clear 

1	  Rank-1 investigation miss rate at N=1.6M mugshot photos for 2013 NEC-30 algorithm (0.041). Table 1.

2	  Rank-1 investigation miss rate at N=1.6M mugshot photos for SenseTime-005 algorithm (0.0009). Table 16. 

https://www.nist.gov/programs-projects/face-recognition-vendor-test-frvt
https://nvlpubs.nist.gov/nistpubs/ir/2018/NIST.IR.8238.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2018/NIST.IR.8238.pdf
https://pages.nist.gov/frvt/reports/facemask/frvt_facemask_report.pdf
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and consistent. NIST reported that when testing instead on images taken from self-operated ATM kiosks 
where images had a far greater range of quality, error rates often rose to above 20 percent, even for some of 
the most accurate algorithms. 

Importantly, it is not just the images captured during the sign-in attempt which must be high quality, but 
also the stored target images being used for comparison. For example, if a facial recognition system is set to 
compare a person against a database of records, the system may experience errors if those records are not 
regularly updated. Changes in subjects’ faces over time can make it difficult to match pictures taken many 
years apart. NIST’s tests on aging in the FRVT have found that median false-negative error rates increase 
from 4.1 percent when matching against photos that are 0 to 2 years old to 32.1 percent when matching 
against photos that are 14 to 18 years old.3 

Quality effects are important to note when considering how FRTs may perform in different circumstances. In 
“unconstrained” settings where subjects are unaware their image is being taken, and operators are not able to 
control the image quality, the accuracy of facial recognition algorithms is much lower than what is measured 
in a lab. To measure this, in 2017, NIST conducted their Face in Video Evaluation (FIVE) to test algorithms’ 
performance when applied to video captured in real-world settings. They found that when asked to analyze 
footage of individuals walking through a sporting venue, median false-negative rates for the leading algo-
rithm varied from a low of 13 percent all the way up to 64 percent, depending on camera placement.4 

This is far too high of an error rate for this type of deployment to be reliable in practice, but similar tests 
in more constrained settings have provided better results. For instance, in 2020, the U.S. Department of 
Homeland Security’s Maryland Test Facility (MdTF) tested 60 combinations of commercial face acquisi-
tion and matching systems as part of their 2020 Biometric Rally. The test involved sending volunteers 
through an environment similar to what may be found at a border checkpoint or stadium ticket station. 
Participants approached one at a time in an orderly manner into an area where a camera was positioned to 
capture a clear head-on photo. The leading algorithm achieved a 99.7 percent true positive rate during the 
simulation, while the median algorithm achieved a true positive rate of 93 percent. When taken together 
with the results from NIST’s FIVE, this shows that while many real-world settings will likely continue to 
pose significant challenges for facial recognition systems, a combination of technical improvements and 
careful control of image capture environments may soon make it possible for these systems to be deployed 
in certain real-world settings with a high degree of reliability.

Other than image quality, the other prime factor impacting facial recognition performance is the algorithm 
quality. In their most recent report, NIST emphasized that “recognition accuracy is very strongly depen-
dent on the algorithm and, more generally, on the developer of the algorithm. False negative error rates 
in a particular scenario range from a few tenths of one percent to beyond fifty percent,” depending on the 
vendor being evaluated. In NIST’s FIVE, for example, the leading algorithm had an observed error rate of 13 
percent on the best-quality video stream, but the error rate for the median algorithm on that same footage 
jumped to 60 percent.5 For the lowest-quality stream, the median algorithm had a false negative rate of 92 
percent, meaning that over half of the algorithms missed more than 9 out of 10 matches.6 Even in MdTF’s 
more recent evaluation, researchers found that only 4 of the 60 combinations of acquisition and matching 
systems they tested achieved the target goal of a 99 percent true positive rate. 

3	  COGENT-004 (0,2] and DEEPSEA-001 (14,18] FNIR at identification for FPIR = 0.001. Table 5. 

4	  M32V FNIR on identification at low 6ft placement and door 8ft placement (near field) on dataset P.

5	  N31V FNIR on identification at high 6ft placement (near field) on dataset P.

6	  J31V FNIR on identification at door 8ft placement (near field) on dataset P.

C://Users/wdcru/Downloads/frvt_1N_report_2021_03_04.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2018/NIST.IR.8238.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2017/NIST.IR.8173.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2017/NIST.IR.8173.pdf
https://mdtf.org/Rally2020/Results2020/MatchingResults
https://github.com/usnistgov/frvt/blob/nist-pages/reports/1N/frvt_1N_report_2021_02_09.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2017/NIST.IR.8173.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2017/NIST.IR.8173.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2017/NIST.IR.8173.pdf
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This shows that achieving reliable performance requires both high-quality images and high-quality al-
gorithms. While a few leading vendors have managed to develop facial recognition algorithms that can 
achieve very high accuracy in controlled conditions, the average facial recognition provider still struggles 
to achieve similar reliability, and even the best still experience issues when deployed in unconstrained 
settings. This makes it difficult to come to broad conclusions, either positive or negative, about the accura-
cy of facial recognition systems, as the operational performance is so heavily dependent on the vendor and 
the context of deployment. 

What can be said is that a facial recognition system is much more likely to have high performance in 
situations where subjects are cooperative and aware their image is being captured, where camera place-
ment allows for good lighting and positioning, where the photos being matched to are of high quality, and 
where the algorithm is sourced from a leading vendor. This shows that policymakers and operators need to 
consider the circumstances of deployment and the algorithm being used to fully understand the potential 
risks of a deployment.

Understanding Comparison Thresholds
The previous section established that there are two kinds of errors a facial recognition system can make: 
false negatives and false positives. Understanding the relationship between these two kinds of errors is 
important for the operators responsible for adjudicating matches and for policymakers considering the 
potential impacts of facial recognition deployments. In general, it is difficult to reduce the rate of either 
false positives or false negatives without raising the other. To understand why, consider the following set 
of pictures featuring Chihuahuas and blueberry muffins composed by Twitter user @teenybiscuit: 

Source: Karen Zak, Twitter Post, March 9, 2016, 4:40 p.m., https://twitter.com/teenybiscuit/status/707727863571582978. 

Imagine that someone wanted to use this series of images to test out a facial recognition system for dogs. 
The test was whether the system could correctly determine that the two images highlighted in red are 
of the same dog. One of the highlighted images was selected and input into the system as the target for 

https://twitter.com/teenybiscuit/status/707727863571582978
https://twitter.com/teenybiscuit/status/707727863571582978
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matching to run the test. After processing each of the other images, the system output the following simi-
larity scores (ranging between 0 and 1), indicating how similar it calculates each image is to the target: 

We know that image B is actually the correct match, but we can see from these results that the system 
believes that the most similar image is actually G. If the system had been set up to only report back images 
with scores of at least 0.9—minimizing the risk that it would return false positive matches—then it would 
have rejected the correct match—a false negative. If, however, the system was instead set to report back 
every match with scores of at least 0.8, its results would include the correct match (a true positive) but also 
two false positives. And one of those would have been a muffin.7 

From this, we can see that imposing high similarity score thresholds can sometimes mean that the correct 
match ends up being rejected. But by lowering the threshold, we let in more false positives. For any given 
algorithm, the trade-off between false negative rates and false positive rates as this threshold is changed 
can be depicted using a graph called a detection error tradeoff (DET) curve. The figure below depicts an 
example of what the DET curve for a hypothetical algorithm may look like. It is important to note that the 
exact shape of this curve will vary for each algorithm.  

Fa
lse

 N
eg

at
iv

e 
Ra

te

False Positive Rate

A

B

1% 10%0.1% 100%0.01%

1%

10%

0.1%

100%

0.01%

This curve represents the different combinations of false positive and false negative error rates that an al-
gorithm can achieve. Depending on the similarity threshold used, an algorithm can theoretically sit at any 
point along this curve. Instituting a high similarity threshold (like 0.9 in the chihuahua example above) 
may lead to the algorithm operating at point A on the graph above. At this point, fewer than 1 in 1000 

7	  This example is for illustrative purposes only and should not be taken as representing the actual performance of modern computer 
vision systems. 
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comparisons between images of two different people will yield a false match. However, 1 in 100 compari-
sons between two images of the same person will be incorrectly rejected. 

Alternatively, in deployments where the risks of false negatives are greater than the risk of false positives, 
operators may decide to institute a lower threshold, leading to the algorithm operating at point B. Here, the 
relationship would be reversed, with 1 in 100 comparisons between images of two different people leading a 
false match, and fewer than 1 in 1000 comparisons between two images of the same person being rejected. 

There is no single correct answer about what threshold a facial recognition system should be set to. It depends 
entirely on what the technology is being used for. In some cases, like terrorist screenings at military bases, the 
risks resulting from a false negative (failure to recognize a terrorist suspect) are often much higher than the 
harms resulting from a false positive (pulling additional innocent individuals out for secondary screening). 
Here, operators will likely prefer lower similarity thresholds. Low thresholds may also be appropriate in some 
commercial applications, like when using facial recognition in retail stores to sign customers into customer 
loyalty programs, as the likelihood and risks of someone logging into another person’s account are negligible. 

In other circumstances, false positives may pose a greater risk than false negatives. The most obvious 
example of this kind of situation is when facial recognition is used by law enforcement to generate inves-
tigative leads. Here, acting on erroneous matches could lead to the arrest of innocent people. However, it 
is important to note that in most law enforcement deployments in the United States, facial recognition is 
used to produce a list of potential leads for investigators to review rather than as a way of singling out a 
particular suspect for arrest. When used this way, there is an opportunity for operators to institute addi-
tional layers of safeguards to identify false positives before those errors lead to negative consequences. 

Understanding Similarity Scores
Similarity scores form the basis for setting comparison thresholds, but they are also important to under-
stand due to the way they are often misinterpreted by operators. Recall the previous hypothetical example 
of chihuahuas and blueberry muffins, where the system was set to return a score between 0 and 1 describing 
the degree of similarity between two images. These similarity scores are often misunderstood as translating 
directly to percentages (i.e., a similarity score of 0.9 means there is a 90 percent chance that the match is 
correct). But this is not what the score actually represents. The figures below represent a simplified graph of 
all the similarity scores calculated by a hypothetical system as it tests different pairs of faces:
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In this graph, the green curve represents the he distribution of similarity scores generated when a target 
image is compared agaisnt the face of a different person (referred to as an imposter). As you can see, the 
large majority of these cases yielded low similarity scores, but a small number of test cases yielded higher 
scores due to the fact that some imposters may closely resemble the target.

In contrast to the first graph, the blue curve in the second graph shows that a majority of comparisons 
between genuine matches yield high similarity scores, though a few produce low scores due to issues with 
quality, aging, or other factors. Importantly, each developer has a different distribution associated with 
their algorithm, so even though they may present their similarity scores in a similar form, a given score 
means something different for each vendor.   

These probability distributions allow us to make statements about the chances of particular events occurring. 
For example, we can find the probability that a random imposter will return a similarity score of 0.9 or above 
by dividing the area of the green curve to the right of 0.9 by the area of the green curve to the left of 0.9. 
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As we can see, this probability will be very small—perhaps 1 percent. However, this is different than saying 
that matches yielding a similarity score of 0.9 have a 99 percent chance of being correct. To understand 
why, we must explore a common statistical mistake known as the “prosecutor’s fallacy.” 

As we all know, all dogs have four legs (with a small number of exceptions due to accidents and genetics). 
From this, we can make a straightforward statistical statement about the probability of a dog having four 
legs in the form of “given A, what is the probability of B?” We can represent “being a dog” as condition A, 
and “having four legs” as condition B: 

If A is true, what is the probability of B?  “If an animal is a dog, then the probability it has four legs 
is 99%.”

Simple enough. But then we change it to take the converse form:

If B is true, what is the probability of A?  “If an animal has four legs, then the probability it is a dog 
is 99%.”

This is obviously wrong, demonstrating that you cannot simply reverse the order of such a statement and 
be sure it will remain true. However, there are other times when this mistake may not be as obvious. For 
example, one could imagine running facial recognition on two images and getting back a similarity score 
of 0.9. Now say that according to that vendor’s particular distribution, there is only a 1 percent chance of 
a similarity score of 0.9 occurring if the target image and test image are from different people. From here, 
we can redefine A to represent “the facial recognition match is incorrect” and B to represent “the system 
returns a similarity score of 0.9”:

If A is true, what is the probability of B  “If the facial recognition match is incorrect, then the proba-
bility that the system returns a similarity score of 0.9 is 1%.”

This is the precise statistical meaning of a facial recognition similarity score, as we explained above. But if 
we then change it to the converse form like the former example, it becomes:

If B is true, what is the probability of A  “If the system returns a similarity score of 0.9, then the 
probability the facial recognition match is incorrect is 1%.”

In this example, the converse is not obviously incorrect as in the first case, but it is still just as wrong. This 
is known as the prosecutor’s fallacy because of the way this flaw in statistical reasoning is often used to 
misrepresent the meaning of forensic evidence. In reality, the likelihood that a given match with a similar-
ity score of 0.9 is incorrect could be much higher than 1 percent. To illustrate this, imagine a trial run of a 
face-based shoplifter detection system that worked by comparing the faces of each person who entered a 
mall against a watchlist of people who had been caught shoplifting there over the past two years. 

Imagine that out of 5,000 people who visit on a particular day, 10 of them are former shoplifters who are 
included in the mall’s watchlist. Now, let us say that the facial recognition system is accurate enough to 
have a 70 percent chance of identifying an imposter when they walk in (a 30 percent false negative rate). 
Let us also say that given the comparison threshold used by the operator, the system has a 1 percent 
chance of mistakenly matching an innocent individual to a person on the watchlist (a 1 percent false posi-
tive rate). From this, we can predict the following will happen:
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5,000 shoppers

10 on 
watchlist

4,990 not 
on watchlist

7 (70%) 
generate 
an alert

3 (30%) 
generate 
no alert

50 (1%) 
generate an 

alert

4,940 (99%) 
generate no 

alert

True Positives False NegativesFalse PositivesTrue Negatives

From this, we can see that the system would likely generate around 57 alerts in an average day, of which 
only 7 (12 percent) would be correct. This is not necessarily a problem if the operators are made aware 
of these statistics and the fact that the large majority of alerts the system generates are likely to be false. 
In this case, human reviewers can be careful to double-check alerts to make sure they only act on clear 
matches. The problem emerges when the vendor of such a system reports that their algorithm is set only to 
report matches it is “99 percent confident in,” and then operators who do not know the difference assume 
every alert has a 99 percent chance of being a genuine match. 

This is why operator training and match presentation is so important to managing the risks of facial recognition 
systems. Operators must be aware of how their systems actually operate if they are to make informed judgments 
about how to adjudicate potential matches. Developers should also take this into consideration and not build 
user interfaces that present operators with misleading information about the meaning of the scores they return.  

This is not how facial recognition actually works.

Photo by Kevin Frayer/Getty Images
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Is Facial Recognition Biased?
One of the most common criticisms of facial recognition is that it has different accuracy rates for different 
demographic groups, leading to risks that members of certain groups are more likely to suffer the conse-
quences of being misidentified, particularly in the law enforcement context. The most thorough investiga-
tion of this disparity was completed by NIST in 2019. Through their testing, NIST confirmed that a majori-
ty of algorithms exhibit demographic differences in both false negative and false positive rates. 

Using curated images, NIST found that, in general, Asians, African Americans, and American Indians had 
higher false positive error rates than white individuals, women had higher false positive rates than men, 
and children and the elderly had higher false positive rates than middle-aged adults.8 Differences in false 
positive rates are generally of greater concern to privacy advocates, as there is usually greater risk in to 
subjects in being misidentified than in being incorrectly rejected by a facial recognition system. Howev-
er, in some applications such as access control, there may actually be a greater risk in missing the correct 
identification of bad actors, leading to greater interest in the false negative rates. NIST found that demo-
graphic factors had a much larger effect on false positive rates (where differences in the error rate between 
demographic groups could vary by a factor of 10 or even 100) than false negative rates (where differences 
were generally within a factor of 3 depending on the threshold value for a positive match). 

However, NIST also came to several encouraging conclusions. The first is that differences between de-
mographic groups were far lower in algorithms that were more accurate overall. This means that as facial 
recognition systems continue to improve, the effects of bias will be reduced. Even more promising was 
that some algorithms demonstrated no discernible bias whatsoever, indicating that it may be possible to 
eliminate bias with the right algorithms and development processes.. One of the most important factors in 
reducing bias appears to be the selection of training data used to build algorithmic models. If algorithms 
are trained on data sets that contain very few examples of a particular demographic group, the resulting 
model will be worse at accurately recognizing members of that group in real-world deployments. NIST’s 
researchers theorized that this may be the reason many algorithms developed in the United States per-
formed worse on Asian faces than algorithms developed in China. Chinese teams likely used training data 
sets with greater representation of Asian faces, improving their performance on that group. 

In addition to training data, the quality of the images being captured also has a large influence on demo-
graphic differences. An assessment of 11 commercial facial recognition systems by MdTF found that dark 
skin was associated with lower similarity scores but that the skin reflectance of the subject was a better pre-
dictor of accuracy differences than the self-reported race of the subjects. This may indicate that higher-quali-
ty cameras and better image capture setups could make a large difference in eliminating demographic bias by 
improving operators’ ability to take clear images of dark-skinned individuals. Similar to NIST, the MdTF found 
that the most accurate algorithm overall had an almost negligible demographic effect, further supporting the 
conclusion that improvements in algorithm quality will gradually reduce bias in these systems. 

It is important to note that popular reporting about the issue of facial recognition bias often conflates facial recog-
nition with face characterization. In particular, there has been significant media attention paid to the 2018 Gen-
der Shades study, which tested three commercial gender classification systems and found that darker-skinned 
females were misclassified as male up to 34.7 percent of the time, compared to light-skinned men, who were only 
misclassified as women up to 0.8 percent of the time. This obviously represents a significant discrepancy, and 
these findings have helped drive focus and attention on the issue of algorithmic bias in recent years.

8	  The racial categories used by NIST were based on the FBI’s “Electronic Biometric Transmission Specification Technical and Opera-
tional Update (TOU)” 10.0.9, May 22, 2018  

https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.8280.pdf
https://mdtf.org/publications/demographic-effects-image-acquisition.pdf
http://proceedings.mlr.press/v81/buolamwini18a/buolamwini18a.pdf
http://proceedings.mlr.press/v81/buolamwini18a/buolamwini18a.pdf


How Does Facial Recognition Work?  |  16

However, it is important to remember that this finding relates to face characterization systems, not face rec-
ognition systems. Popular reporting frequently elides this distinction and implies that this level of bias also 
applies to facial recognition systems. While many of the underlying causes of bias in facial recognition and 
facial characterization are similar (e.g., lack of representative training data, poor lighting, and image capture), 
finding a particular magnitude of bias in one does not prove that the same magnitude of difference is present 
in the other. Particularly given that face characterization is a much younger and less well-developed field of 
study than facial recognition, it is to be expected that the technology will have worse performance. The Gen-
der Shades study is an excellent resource for policymakers thinking about the risks associated with deploying 
gender characterization technology. But when discussing face recognition, policymakers should base their 
deliberations on the risks posed by demographic differences in accuracy rates, primarily on evaluations such 
as those conducted by NIST and MdTF, which specifically tackle recognition technologies. 

Conclusion
As policymakers and operators work to develop new rules and regulations to govern the use of FRTs, it is 
important that these efforts be grounded in facts about how the technology works. Facial recognition is 
usually discussed only in the context of its most dystopic applications, but in reality, it is a multifaceted 
tool that can be applied to a range of different problems, from signing a user into their phone to generating 
leads in law enforcement investigations. In the majority of these cases, facial recognition is used to aid 
human decision-making rather than replace it. 

This human oversight helps to mitigate the risk of errors which are still a major problem for many real-
world deployments. While technical improvements will help to improve facial recognition performance 
and reduce demographic differences in accuracy rates, facial recognition will never be perfect. To manage 
risks, operators must understand how system performance can be affected by the conditions of a 
deployment, select appropriate confidence thresholds to manage the trade-off between accuracy and risk, 
and adopt safeguards that account for how theoretical performance translates to real-world impacts. 

Operators, policymakers, and the public must also understand the difference between facial recognition and 
facial characterization. This crucial distinction is too often blurred, leading to criticism that is misleading or 
incorrect. An improved understanding of the issues covered in this report will help ensure this technology 
can be deployed safely in a way that allows us to capture its benefits while managing the risks.   
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