

Water and Energy Nexus: Strategic Thinking

Carey King, Ph.D.

Center for International Energy and Environmental Policy
The University of Texas at Austin

April 15, 2010

Water for Energy: Electricity

US hydropower exemplifies water limiting an energy resource

Water Consumption depends heavily upon fuel + cooling system and carbon capture choices

Power generation might have to adapt to low water consumptive technologies

- Dry cooling
 - Solar thermal systems in desert Southwest
 - Prevent "Gal/MWh_{net}" increases due to auxiliary power and heat for CO2 capture
 - Proposed coal CCS in W. Texas plan dry cooling
- Wind, PV solar, and NG combustion consume very little water directly
- Legal water rights restrictions may be as influential as physical water availability

Water for Energy: Transportation Fuels

Dominguez-Faus et al. *Environ. Sci.* & *Technol.* **2009 43** (9), 3005-3010.

Water intensity of LDVs varies from 0.1 to > 60 gal/mile for consumption

Most corn (and ethanol) in US is in Midwest

Most intensive irrigation in Western US and Central Plains

Irrigated Land % of Harvested Land

0.94% to 2.67%

8.42% to 42.49%

>42.49%

How does diversity in transportation fuels affect direct water consumption?

"Low Diversity Scenario for 2030": AEO 2008 Ref. case still 65% petroleum based (4.1 trillion miles)

"High Diversity Scenario for 2030": ~ 20% conventional petroleum (4.1 trillion miles)

"Low Diversity Scenario" shows H₂O consumption to 14,000 GL by 2030

"High Diversity Scenario" also shows consumption of 14,000 Billion Liters in 2030

Are we inherently trading "domestic water" for "foreign oil"?

- Direct water for LDVs
 - 2005 ~ 4,000 GL/yr (3% US total)
 - 2030 could go to 14,000 GL/yr (10% US total)
 - ~ 9,000 GL/yr w/o irrigation of grasses
- US total consumption: 140,000 GL in 1995 (USGS, 1998)
- Comparisons for consumption
 - Thermoelectric sector ~ 3% 4%
 - Irrigation ~ 80%
 - Biofuels are now a subset of irrigation

Water – energy – climate becoming more important in policy

Future Water and Energy Policy: How does Water influence Energy and GHG?

- American Clean Energy Leadership Act of 2009 of 2009 (in committee)
 - "... include a lifecycle assessment of the quantity of water withdrawn and consumed in the production of transportation fuels ..."
 - i.e. calculate as gal H₂O/mile

King & Webber (2008) Env. Sci. and Tech.

"Virtual" required water trade Whatabout Biofue ??

Global energy and GHG models predict wide variability in long term land use change

C tax:
fossil fuels
+
land use
change

Global energy and GHG models predict wide variability in long term land use change

C tax: fossil fuels only

New data, modeling, and interpretation are needed

"If links between water use and carbon emissions/sinks can be articulated, funds from carbon markets might become available to improve water management."

How should we think about end uses of water resources?

- Food vs. fuel water and land coupled
 - Research organizations focusing on rainfed biofuel feedstocks
 - Do we care what the crop is for or how the crop is grown?
- What % of available and consumptive water is "acceptable" for energy?
- Water footprints
 - Product-specific (gal/widget)
 - industry, consumer
 - Geographically-expanse (gal/watershed)
 - government, NGO

Thank You

http://www.jsg.utexas.edu/cieep

Carey King, Ph.D.

careyking@mail.utexas.edu