Earth Observation Investment Decisions for the Future

Mary Kicza

Assistant Administrator for Satellite and Information Services National Oceanic and Atmospheric Administration

Global Space Development Summit 2009

November 13, 2009

National Oceanic and Atmospheric Administration

Dr. Jane Lubchenco

"To develop an informed society that uses a comprehensive understanding of the role of the oceans, coasts, and atmosphere in the global ecosystem to make the best social and economic decisions."

NOAA's Priorities

- Enhance NOAA's climate services and support the establishment of a National Climate Service
- Support comprehensive marine spatial planning
- 3. Ensure the sustainability of marine fisheries
- 4. Strengthen Arctic science and stewardship
- 5. Sustain satellite-based Earth observations

NOAA Satellite Operational Continuity Plan

- In 2007, a multi-disciplinary NOAA/NASA team developed a Satellite Strategic Plan
 - Examined NOAA's documented Earth observation requirements and the means by which these requirements were currently being met and outlined a detailed strategy for addressing NOAA's requirements for the future
- The plan recommended that NOAA:
 - Continue the current programs
 - GOES-N, GOES-R, POES, NPOESS, and Ocean Altimetry
 - Ensure climate data continuity
 - Deliver climate sensors to NPP and NPOESS in the near term, with the long term strategy defined by 2010
 - Pursue "Research to Operations" transitions
 - Pursue high priority measurement candidates for research to operations transition and incorporate into budget submissions as they are ready
 - Ocean altimetry, solar wind, ocean surface vector winds, radio occultation measurements for atmospheric temperature and humidity profiles
 - Identify future measurement candidates and external partnerships for research to operations transitions
 - Continue analysis of alternatives and simulation studies to determine best approaches for future transitions
 - Continue work with commercial sector for possible purchase of satellite products and services meeting NOAA requirements

Continuity of Current Programs

Geostationary Satellites

- GOES-N and -O launched (now GOES-13 and -14), GOES-P scheduled for launch April 2010
- GOES-R contracts for space segment and ground segment awarded, work underway, with first launch planned for early 2015

Polar-orbiting Satellites

- POES-N Prime launched (now NOAA-19)
- NPOESS development continues

GOES-14 Launch, June 27, 2009

Continuity of Climate Data

- Climate sensors (ozone and Earth radiation budget) delivered to NPP and under development (Earth radiation budget and total solar irradiance) for NPOESS C1
- Options for continuity beyond NPOESS C1 are being examined
 - Includes CERES, TSIS, OMPS and APS.
 - NPOESS, government and/or commercial free flyers under consideration
- Jason-3 Ocean Altimetry mission in President's FY10 budget request

Research to Operations Transitions

- Solar Wind
- GPS Radio Occultation
- Ocean Surface Vector Winds

OSVW from QuikSCAT - October 14, 2009

Planning for Future Research to Operations Opportunities

- NOAA scientists are participating on NASA Science teams and Public workshops for future NASA Earth Science missions
 - Aquarius Sea-surface Salinity
 - Glory -- Total Solar Irradiance, Aerosol Polarimetry
 - Global Precipitation Mission
 - NRC Decadal Survey
 - SMAP -- Soil Moisture
 - ICESAT 2 Ice Sheet Climatology
 - DesDynl Ice Concentration
 - CLARREO Absolute calibration standard, GPSRO
 - ACE -- Polar-orbiting atmospheric properties and ocean color
 - GeoCAPE Geostationary Atmospheric Composition and Ocean Color
 - SWOT Altimetry
- NOAA is providing supplemental funding to JPL microwave imager / sounder development for potential future flight on geostationary satellite mission
 - GeoSTAR (Instrument Incubator Program)

Exploring Commercial Alternatives

- Request for Quotation (RFQ): Price Validation and Technical Feasibility studies for commercial services to meet earth and space weather observation requirements
- To date, three sets of contract awards issued totaling \$550,000
 - Set A for Total solar irradiance, solar wind, Coronal Mass Ejection, GPS Radio Occultation, and Ocean Surface Vector Winds
 - Set B for Earth Radiation Budget, Ocean Color, Altimetry, and Geostationary advanced soundings
 - Set C for Aerosol Polarimetry and Ozone Profiles
- Final reports for Set A and Set B studies were received and are being evaluated. Set C studies are due by end of 2009
- Based on the results of the first sets of studies, we expect opportunities for future partnerships

Civil Space International Capabilities: Coordination of International Earth Observations

Group on Earth Observations (GEO)

- Membership consists of 76 countries and the European Commission, over 56 participating organizations and observers
- Next GEO Plenary -- Washington, D.C., November 2009

U.S. Group on Earth Observations (USGEO)

- 25 participating U.S. Government Department and Agency members including two White House offices
- Standing subcommittee of the National Science and Technology Council Committee on Environment and Natural Resources

Committee on Earth Observation Satellites (CEOS)

- 27 members (Space Agencies), 21 Associates (UN Agencies, Agencies with space programs in conceptual design phase and/or Agencies with supporting ground facilities)
- CEOS serves as the "space arm" of GEO, implementing high priority GEO actions requiring space-based Earth observation

Unifying Principle: Global Earth Observation System of Systems (GEOSS)

- Coordinating strategies and observation systems
- Linking platforms: in situ, aircraft, and satellite networks
- Identifying gaps in our global capacity
- Facilitating exchange of data and information
- Improving decision makers' abilities to address pressing policy issues

