

China Lunar Exploration Program

Global Space Development Summit
November, 2009

Plan of CLEP

Three phases in China Lunar Exploration Program (CLEP), or Chang'E program: orbiting, landing and sample returning.

Orbiting

Landing

sample returning

China Aerospao

1. 1st Phase of CLEP

Engineering Goals of 1st phase of CLEP is to develop a lunar orbiter and perform lunar remote sensing:

- **1** To develop the first Chinese lunar orbiter
- **②** To develop technology for lunar exploration
- **3** To develop research of lunar science
- **4** To build lunar exploration engineering system
- **5** To accumulate experience for further exploration

Scientific goals of 1st phase of CLEP

- **1** To acquire 3 dimensional image of lunar surface;
- ② To analyze abundance and distribution of different elements on lunar surface;
- **3** To explore characteristics of lunar soil;
- **4** To explore the environment between the Earth and Moon.

Engineering System:

- Chang'E-1 orbiter
- CZ-3A Launch vehicle
- Xi'chang launch center
- ground telecommunication
- ground application

CE-1 Orbiter

⇒ Based on DFH-3 bus

Nine subsystems: structure, GNC, propulsion, TT&C, thermal control, Power supply, ODBC, directional antenna, payloads. Flight Direction

⇒ Life: 1 year

⇒ Payloads: CCD camera, Imager Spectrometer,

Propellent Tank

Laser altimeter, γ-ray/X-ray spectrometer,

Microwave detector, Solar high energy Particle

detector, Low energy ion detector

Solar Array

Events of CE-1

- 1. Oct. 24, 2007, successfully launched
- 2. Nov. 7, 2007, enter 200km normal operation orbit
- 3. Dec. 6, 2008, after one year around the Moon, went into 100km lunar orbit
- 4. Dec. 19, 2008, lower orbit into 15km×100km orbit
- 5. Mar. 1, 2009, impact lunar surface in 52.36°E, 1.5°S by command, fulfilled 12 times coverage to the moon.

中国首次月球探测工程第一幅月面图像

Achievement of CE-1

⇒ Engineering goals are all accomplished.

⇒ Scientific achievements: acquire 1st image of lunar surface by China

> 280km×460km 57°E ~ 83°E 54°S ~ 70°S

Acquire high quality 3-D image of lunar globe.

3-D composition of first lunar surface image

Image of lunar north and south pole.

Distribution of elements of lunar globe.

Brightness Temperature of lunar surface

Photos taken
before Chang'E-1
impact on lunar
surface.

2. 2nd phase of CLEP

- CE-2 orbiter will be launched in later 2010
- CE-3/4 lunar lander and rover will be launched after 2012. Lunar soft landing and IN-SITU exploration of lunar surface will be conducted.

CE-2 Orbiter is precursor orbiter of soft landing mission.

Mission objective:

key technologies such as LTO launch
X-band TT&C for deep space exploration
acquire high definition image of landing zone for CE-3/4, improved from 120m to 10m.

Mission objectives of CE-3/CE-4

CE-3 is a lunar soft landing mission including a lander and a rover.

CE-4 is the backup of **CE-3**.

Objectives of CE-3/4:

- **⇒** Perform lunar soft landing ,roving, and tele-operation.
- **⇒** Develop lunar soft lander and rover, build up deep space ground antenna, show Chinese capability to execute lunar exploration.
- **⇒** Build up lunar exploration engineering system.

Scientific Objectives of CE-3/CE-4

- **⇒** To study the landscape of lunar surface
- **⇒** To study material composition and usable resources
- **⇒** To study lunar internal structure
- ⇒ To explore the environment among Sun, Earth and Moon and build up telescope based on Moon

CE-3/CE-4 Lunar Probe

Lunar soft lander

Lunar rover

CE-3/CE-4 Lunar Soft Lander

⇒ 11 Subsystems : GNC, propulsion, power supply, power contribution, TT&C, data handling, structure and mechanism, landing cushion, directional antenna, thermal control and payload.

⇒ Scientific Payloads: terrain camera, descent imager, telescope and ultra-violet camera.

⇒ Engineering instruments: monitoring camera, lunar dust detector.

CE-3/4 Lunar rover

⇒ 8 subsystems: payloads, GNC, thermal control, onboard data handling, power supply, TT&C, structure and mechanics, and locomotion.

Payloads: pancamera, lunar subsurface penetration radar, APX and infrared imager spectrometer.

3. 3rd phase of CLEP

□ In the third phase of CLEP, a combined probe will perform lunar sample return task.

⇒ Information exchange

Exploration data of Payloads

3-D image of landing zone, such as rainbow, definition 1m or less

Lunar dust character

Lunar soil mechanical character

• • • • •

Academic Exchange Environment

⇒ Joint Exploration

Different zone

Different payloads

Synergy exploration

interferometry, impact wave (moonshake)

• • • • •

⇒ International Lunar Lab

Openness

Symbol

Union

Limited scale

Permanence

• • • • •

Conception Impetus

propositional companies

conception scheme

folk suggestion from countries

• • • • •

Developing research on Lunar Lab supported by 863 plan

- -Extensible structure
- -Preparation method on H₂O and O₂
- -Energy system of the Lab
- -Temperature control (underground maybe)

The task will end in 2011.

The end. Thanks for your attention!

Contents

- **⇒ Strategic Plan of CLEP**
- **⇒ Overview of CE-1**
- **Scientific Achievements of CE-1 Orbiter**
- **⇒ The Latest Updates of CLEP**
 - CE-2 Orbiter
 - CE-3 Lander and Rover
 - 3rd Phase of CLEP
 - Application of CE-1/2 in Mars Exploration

Strategic Plan of CLEP

Orbiting Landing Sample and Return
Of Chinese space experts proposed lunar exploration program

⇒ In 1991, Chinese space experts proposed lunar exploration program and conducted some research.

- ⇒ In Nov. 2000, White Paper on China's Space Activities stated to carry out study for deep space exploration focusing on the Moon.
- ⇒ In Jan. 2004, China State Council approved first Phase of China Lunar Exploration Program (CLEP), i.e. Lunar Orbiting Exploration (CE-1) Project.
- □ There are three Phases in CLEP: 2007(orbiting), 2012(landing), and 2016(sample and return).

Development history of CE-1

Engineering System of CE-1 Project

In Feb. 2004, development of Chinese first lunar orbiter CE-1 and Lunar Orbiting Exploration Project were initiated.

CE-1 orbiter was launched in Oct. 24, 2007, who became the third milestone of China space industry.

Flight Profile of CE-1 Orbiter

⇒ Launch Orbit: **Super GTO**

48h Orbit

⇒ Phasing Orbit: 16h

 \rightarrow 24h \rightarrow 48h

⇒ LTO: 5days

 \Rightarrow LOI: 12h \rightarrow 3h \rightarrow 127min (nominal orbit)

Moon Orbit

Major features of CE-1 Orbiter

- **⇒** Launch Mass: 2350kg
- \Rightarrow Dry mass: 1150kg
- **⇒** Fuel mass: 1200kg
- ⇒ Scientific payloads: 140kg
- ⇒ Operation orbit: 200km, 90°
- ⇒ Life on orbit: 1 year

Flight Configuration

Major Subsystems of CE-1 (I)

- ⇒ Structure: central bearing cylinder, honeycomb panel, box, upper module and bottom module, 2.2m×1.72m× 2.2m.
- **⇒ Thermal Control**: active + passive, thermal paint, multilayer thermal blankets and insulation material, heater, sensors, heat pipe and controller.
- ⇒ Power Supply: single dimension symmetric solar panel, Si solar cell, 22.7m², Max output 1450W, Ni-H
 battery (output 48Ah@End Of Life)

Major Subsystems of CE-1 (II)

⇒ GNC: solar sensor + star tracker + gyroscope + ultra violet sensor, zero moment, reaction wheel with thrusters, three-axis stabilized, pointing accuracy better than 1°(3σ), stabilization accuracy better than 0.01°/s

⇒ Thrusters: Bi-propellant thrusters with MOH and N_2O_4 , for slow spin, angular rate damper, attitude control and orbit maneuver, 1×490N and 2× (6×10N) thrusters

Attitude Control 3 Body Orientation

Major Subsystems of CE-1 (III)

⇒ TT&C: S-band omni antenna for TT&C, directional antenna for downlink, BPSK, 3Mbps downlink rate, X-band beacon for VLBI

⇒ Directional antenna: two dimension antenna for semi-sphere coverage, gain not less than +18dBi @±5°

⇒ OBDH: two-level distributed redundant subsystem, CTU, 4 RTUs, one TCU, one set of redundant SDB.

Directional Antenna

Scientific Payloads of CE-1

- **⇒** CCD camera/Imager Spectrometer: 3-D images of lunar surface
- **⇒** Laser altimeter: surface topology
- \Rightarrow γ -ray/X-ray spectrometer: elements distribution;
- **⇒** Microwave detector: thickness of lunar regolith, He-3;
- **⇒** Solar high energy Particle detector/Low energy ion detector: circumstance among Earth, Moon and Sun

CCD Camera

Laser altimeter

Microwave Detector

Major Events of CE-1

- 2007-10-24, successfully launched in 0 window
- **2007-10-31, enter LTO**
- 2007-11-2, en route correction
- 2007-11-5, first LOI into 12h lunar polar orbit
- 2007-11-7, enter 127min normal operation orbit
- 2007-11-20, scientific payloads on
- 2007-11-26, 1st image issued by Premier Wen Jiabao
- 2008-2-21, pass first lunar eclipse
- 2008-8-17, pass second lunar eclipse
- 10. 2008-10-24, one year after launched, accomplish all scientific and engineering mission goals

Major Events of Extended Mission

- 1.2008-12-6, lower orbit into 100km lunar orbit
- 2.2008-12-19, lower orbit into 15km×100km orbit
- 3.2008-12-20, back into 100km orbit
- 4.2009-2-9, pass third lunar eclipse
- 5.2009-3-1, impact lunar surface in 52.36°E , 1.5°S by command

Experiments of CE-1 Extended mission gained more engineering experience for subsequent lunar missions.

Scientific Achievements of CE-1 (I)

- **⇒ 1st Lunar image by CE-1**
- **⇒ Issued in Nov. 26, 2008**
- ⇒Image size: 280km×460km
- ⇒ Pixel resolution: 120m
- ⇒ Location on the Moon: 57°E ~ 83°E , 54°S ~ 70°S

中国首次月球探测工程第一幅月面图像

Scientific Achievements of CE-1 (II)

3-D composition of first lunar surface image

Scientific Achievements of CE-1 (III)

- **⇒ 1st Lunar far side image**
- ⇒ Image of crater named by a Chinese Wan Hu who tried making rocket in 1400

Scientific Achievements of CE-1 (IV)

- ⇒ Jan. 31, 2008 image of lunar south pole
- **⇒ Latitude higher than 70°S**
- **⇒ Image quality better than expected**

南半球极区影像

用球程区太阳高度角围小、光型阻制。工程设计中距计划贝对密北缘海度范围进行光带成像。根据成绩1号运行情况和XD立体移程的成像趋 果分析。在太阳高度绝小于设计恒以设的高特度地区。有可能获得清晰的图像。为此进行了根区或像试验。

本国是螺辑一号正星在2008年1月4日获用的离外球根区图像。高3基以20全体相和原像排售高成(本量几种精校正)。位于月球营查查经140度到15%度。由用20度到9%度原理。原稿以预查约60公里。右侧直约90公里。全约200公里。

Scientific Achievements of CE-1 (V)

⇒ Nov. 12, 2008, lunar global image issued, while first package of scientific data was transferred to scientists

Scientific Achievements of CE-1 (VI)

⇒ Mar. 1, 2009, CE-1 impact the Moon by command

The Latest Updates of CLEP

Coming soon after CE-1 success

- ⇒ CE-2 Orbiter
- **⇒ CE-3 Lander and Rover**
- **⇒3rd Phase of CLEP**
- **⇒** Application of CE-1/2 in Mars Exploration

CE-2 Orbiter

- **⇔** Once was a backup of CE-1
- ⇒ CE-2 will be launched in Oct. 2010
- **Different payloads and orbit** from CE-1
- **Demonstrate technologies** for subsequent deep space exploration **△**

Scientific Objectives of CE-3

- **⇒** To investigate the landscape of lunar surface and geological structure of Moon
- **⇒** To investigate material composition and usable resources of lunar surface
- **⇒** To study lunar internal structure
- **⇒** To build up an observatory based on Moon

Flight Profile Of CE-3

Power Descent of CE-3 Lander

Engineering System of CE-3 mission

Lander + Rover

64m/35m/50m +VLBI

Developments of Lander & Rover

Structure model

Impact test of landing leg

Wheels of the rover prototype

Rover prototype under test

Overview of CE-3 Lander & Rover

⇒ Launch date in schedule: later in 2012

⇒ Launch mass: 3750kg

⇒ Landing site: Rainbow (near side)

Lander Rover

3rd Phase of CLEP

- **⇒** Ascending stage, return capsule, orbiter
- **⇒** Launch rockets: CZ-5E
- **⇒** Robotic sample and return
- ⇒ Performed in 2016
- **⇒ Key technologies for sample** and return

- **⇒** Study lunar sample in ground lab
- ⇒ Learn technologies necessary for robotic exploration and future more deeper space exploration even manned lunar exploration

The End

Thanks for your attention

